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Direct minimization method on the complex Stiefel manifold in Kohn-Sham density functional theory is 
formulated to treat both finite and extended systems in a unified manner. This formulation is well-suited for 
scenarios where straightforward iterative diagonalization becomes challenging, especially when the Aufbau 
principle is not applicable. We present the theoretical foundation and numerical implementation of the 
Riemannian conjugate gradient (RCG) within a localized non-orthogonal basis set. Riemannian Broyden-Fletcher-
Goldfarb-Shanno (RBFGS) method is tentatively implemented. Extensive testing compares the performance of 
the proposed methods and highlights that the quasi-Newton method is more efficient. However, for extended 
systems, the computational time required grows rapidly with respect to the number of 𝐤-points.

1. Introduction

Density functional theory (DFT) stands as a highly utilized method 
for simulating a wide range of physical systems, including atoms, 
molecules, clusters, solids, and other complex forms of matter. This 
popularity stems from its exceptional balance between accuracy and 
computational efficiency. The ingenious implementation of Kohn-Sham 
(KS) theory within DFT precisely addresses the non-interacting kinetic 
energy through the solution of a one-body Schrödinger equation, in-
corporating an effective potential inclusive of exchange-correlation (xc) 
effects [1,2].

Presently, the self-consistent field (SCF) algorithm derived from the 
first-order necessary optimality condition is the prevailing method for 
tackling the Kohn-Sham problem. It revolves around identifying eigen-
values and corresponding eigenvectors within the occupied space of 
the Hamiltonian matrix. However, while widely adopted, this approach 
is susceptible to convergence issues. A well-designed density update 
scheme is thus indispensable for achieving convergence within a rea-
sonable number of iterations [3,4]. Meanwhile, the converged solution 
may occasionally be a saddle point of the energy surface rather than a 
minimum [5].

As an alternative, the Kohn-Sham problem can be treated as an op-
timization problem. One approach is the direct minimization of the 
Kohn-Sham energy functional with respect to the electronic degrees 

* Corresponding author.
E-mail address: kluo@njust.edu.cn (K. Luo).

of freedom. This method requires ensuring that the orbitals remain 
orthonormal, thereby framing the task as a constrained optimization 
problem. This can be achieved by applying explicit orthonormaliza-
tion, such as Gram-Schmidt or QR orthonormalization to the updated 
orbitals after each iteration [6,7]. This constrained problem can also be 
reformulated into an unconstrained optimization problem using penalty 
function methods [8–11] or augmented Lagrangian (ALM) methods 
[8,12,13,9,14,15]. However, the smoothness requirement for penalty 
functions necessitates that the original objective function has high-order 
smoothness. In practice, calculating the exact gradients of these penalty 
functions for non-convex problem is often computationally expensive, 
and selecting appropriate penalty parameters can be challenging. Re-
cent parallelizable frameworks within the ALM method demonstrated 
effectiveness and high scalability, showing promise in electronic struc-
ture calculations [14,15].

The constraint can also be fulfilled by a unitary transformation ma-
trix, which is applied to a set of orthonormal reference orbitals and then 
optimized. Using the exponential transformation with a skew-Hermitian 
matrix exponent in a compact basis set such as linear combination of 
atomic orbitals (LCAO), it has been shown that good performance can 
be achieved compared to the SCF method for both finite and extended 
systems [16–24]. However, for non-compact basis functions of size 𝑀
(e.g. plane waves), computing the exponential of these matrices typi-
cally scales as (𝑀3) and thus making it computationally expensive.
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In recent years, considerable progress has been made in the area of 
Riemannian optimization for the electronic structure theory. The non-
convex problem can be converted to a geodesically convex problem in 
a curved space. Since the Kohn-Sham energy is defined on a curved 
space (Riemannian manifold), the optimization has to take the curva-
ture into account [25,26]. The extension of unconstrained optimization 
from Euclidean spaces leads to Riemannian optimization. In addition 
to its effective utilization in various classical optimization problems 
with geometric restrictions, Riemannian optimization has proven highly 
beneficial in electronic structure computations [27–33]. In these works 
by Wen et al. [29], Zhang et al. [30], and Dai et al. [33], finite sys-
tems were treated. Ref. [33] did not address periodic systems. As a 
result, the underlying manifold is thus real in principle and only when 
the basis (e.g. planewaves) is itself complex does the manifold become 
complex. However, in the periodic systems, complexity is required due 
to the intrinsic complexity of the Bloch states. We note that a recent 
2023 paper [34], which is motivated by metallic systems and employs 
a plane-wave basis, uses Bloch-periodic boundary conditions for peri-
odic calculations, as we do here; whereas our formulation is in terms of 
a general, non-orthogonal basis rather than a global, orthonormal one 
as in Ref. [34].

Despite of enormous success of the Kohn-Sham density functional 
theory, it finds difficulty in handling systems with strong correlations, 
such as Mott insulators. One promising theory for this matter going be-
yond KSDFT is the reduced density matrix functional theory (RDMFT) 
[35,36], where the traditional iterative diagonalization meets difficulty 
and the Aufbau principle is not applicable. The orthogonality con-
straint for the natural orbitals (eigenfunctions of the one-particle re-
duced density matrix (1RDM)), can be easily integrated in the Stiefel 
manifold.

In this study, we introduce a unified formulation adaptable to any 
basis for both finite and extended systems within the manifold mini-
mization method. An implementation based on inexact line search of the 
conjugate gradient (CG) (and tentatively Broyden-Fletcher-Goldfarb-
Shanno (BFGS)), for the Kohn-Sham problem is provided within a non-
orthogonal local basis set. By incorporating fractional occupation, both 
metallic and degenerate (or nearly degenerate) systems can be treated, 
which is only possible in the Stiefel manifold but not in the Grassmann 
manifold. Their performances on finite systems and extended systems 
are compared against the standard SCF method and discussed. Its suc-
cess on the Kohn-Sham problem lays a solid foundation for the ongoing 
development of RDMFT and other theories that require non-idempotent 
density matrix.

2. Theory formulation

2.1. Notations

For a complex matrix 𝐴 ∈ ℂ𝑚×𝑛, matrices 𝐴† and 𝐴−1 denote the 
complex conjugate transpose and inverse of 𝐴, respectively. For a vector 
𝑑 ∈ ℂ𝑛, the operator Diag(𝑑) returns a square diagonal matrix in ℂ𝑛×𝑛
with the elements of 𝑑 on the main diagonal, while conversely diag(𝐴)
returns the vector in ℂ𝑛 containing the main diagonal elements of the 
square matrix 𝐴 ∈ℂ𝑛×𝑛. 𝐼𝑝 is an identity matrix of size 𝑝 × 𝑝. The sym-
metrized matrix of a square matrix 𝐴 is denoted as sym(𝐴) = (𝐴+𝐴†)∕2. 
The trace of 𝐴, i.e., the sum of the elements on the main diagonal 
of a square matrix 𝐴 ∈ ℂ𝑛×𝑛, is denoted by tr(𝐴). The Frobenius in-
ner product in Euclidean space for matrices 𝐴,𝐵 ∈ ℂ𝑚×𝑛 is defined as ⟨𝐴,𝐵⟩𝑒 = tr

(
𝐴†𝐵

)
, and the corresponding Frobenius norm ‖ ⋅ ‖𝐹 is 

given by ‖𝑋‖𝐹 = ⟨𝐴,𝐴⟩1∕2 =(∑𝑖,𝑗
|||𝐴𝑖𝑗 |||2

)1∕2
. For a 𝑘 indexed matrix 

𝐴𝑘, the boldface notation 𝐀 is to denote (𝐴1,𝐴2,… ,𝐴𝐾 ) and is of size 
𝐾 . When we are specifically dealing with electronic structure problems, 
we may use indices such as 𝑀,𝑁 . Otherwise, 𝑚,𝑛, 𝑝 will be used for a 
general matrix.

2.2. Continuous Kohn-Sham DFT model

In Kohn-Sham density functional theory, the central quantity in the 
variational principle is the energy functional

𝐸KS[{𝜓𝑖(𝐫)}] = − 1
2
∑
𝑖 
𝑓𝑖 ∫ d𝐫 𝜓∗

𝑖
(𝐫)∇2𝜓𝑖(𝐫)

+𝐸H[𝑛]+𝐸xc[𝑛] + ∫ d𝐫 𝑛(𝐫)𝑣ext(𝐫),
(1)

where the Hartree energy is given by

𝐸H[𝑛] =
1
2 ∫ ∫ d𝐫 d𝐫 ′ 𝑛(𝐫)𝑛(𝐫

′)|𝐫 − 𝐫′| , (2)

and 𝐸xc[𝑛] is the exchange-correlation energy functional, which has to 
be approximated in practice.

Here and throughout this article we work in atomic units and there-
fore have set ℏ =𝑚𝑒 = 𝑒 = 1, where 𝑚𝑒 is the electron mass and 𝑒 is the 
charge of the proton. 𝑣ext is the external potential for electron-nuclei 
interaction.

The electron density 𝑛(𝐫) is the sum of the squared norm of the Kohn–
Sham wave functions 𝜓𝑖(𝐫) weighted by the smearing function 𝑓 (𝜖,𝜇), 
(e.g. the Fermi–Dirac distribution or the Gaussian smearing function)

𝑛(𝐫) =
∞ ∑
𝑖 
𝑓 (𝜖𝑖, 𝜇) ||𝜓𝑖(𝐫)||2 . (3)

The chemical potential 𝜇 is chosen such that the total number of elec-
trons is 𝑁𝑒. In many density-matrix based formulations, it is useful to 
have the single-particle density matrix

𝛾(𝐫, 𝐫′) =
∞ ∑
𝑖=1 

𝑓 (𝜖𝑖, 𝜇)𝜓∗
𝑖
(𝐫)𝜓𝑖(𝐫′), (4)

whose diagonal is the electron density

𝑛(𝐫) = 𝛾(𝐫, 𝐫). (5)

Minimization of the energy functional subject to the orthogonality 
condition

∫ d𝐫 𝜓∗
𝑖
(𝐫)𝜓𝑗 (𝐫) = 𝛿𝑖𝑗 , (6)

leads to the Kohn-Sham equation,

ℎ𝜓𝑖(𝐫) = 𝜖𝑖𝜓𝑖(𝐫) (7)

∇2𝑣H(𝐫) = 4𝜋𝑛(𝐫) (8)

𝑣xc(𝐫) =
𝛿𝐸xc[𝑛]
𝛿𝑛(𝐫) 

(9)

where the single-particle Hamiltonian is ℎ = −1
2∇

2 + 𝑣ext(𝐫) + 𝑣H(𝐫) +
𝑣xc(𝐫). The Hartree potential 𝑣H may be obtained by solving the Poisson 
equation (see Eq. (8)). The dimension of the Hamiltonian matrix 𝐻𝑖𝑗 ≡⟨𝜓𝑖|ℎ|𝜓𝑗⟩ is the size of the basis functions 𝑀 . However, due to the fast 
decaying property of the smearing function, only 𝑁 lowest eigenstates 
are needed. Typically 𝑁 is smaller than 𝑀 by a few orders of magnitude, 
especially for the case of non-compact basis, such as the plane-wave 
basis. Diagonalization of the Hamiltonian gives eigenvalues 𝜖𝑖 ’s which 
are arranged from the smallest to the largest as 𝜖1 ≤ 𝜖2 ≤⋯ ≤ 𝜖𝑁 . This 
equation has to be solved iteratively due to the orbital dependence of 
the single-particle effective potential.

2.3. Matrix formulation

The continuous Kohn-Sham model can be conveniently expressed in 
matrix notations and solved on a computer. To unify the treatment of 
both finite and extended systems, we explicitly include the 𝐤 depen-
dence in the formulation. For each wave-vector 𝐤 in the 1st Brillouin 
zone, due to symmetry, there is a weight 𝜔𝐤 associated with it according 
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to the space-group of the underlying structure. Normally, Kohn-Sham 
eigenstates are Bloch orbitals which can be expanded in terms of a pos-
sibly non-orthogonal basis functions {𝜒𝜇𝐤} of size 𝑀 ,

𝜓𝑖𝐤(𝐫) =
𝑀∑
𝜇=1

𝐶𝜇𝑖𝐤𝜒𝜇𝐤(𝐫) . (10)

Here 𝑖 and 𝐤 are the band index and the Bloch wave vector. The ex-
pansion coefficients 𝐶𝜇𝑖𝐤 can be regarded as a matrix whose 𝑖th column 
contains the expansion coefficients of the 𝑖th wave function indexed 
by 𝐤. For a Γ-point calculation in real basis, real coefficients can be 
used for memory saving and speedup. To keep it general, we have 
𝐂 ∈ ℂ𝑀×𝑁×𝐾 (bold symbol for this size, see notations in Section 2.1). 
Popular choices of basis functions are plane waves [7], Gaussian or-
bitals [37,38], (numerical) LCAO [39], multiresolution analyses [40], 
or finite-difference/finite-element real-space grids [41,42].

Within a local basis set, we might express the basis functions as

𝜒𝜇𝐤(𝐫) =
1 √
𝑁

∑
𝐑 

exp(𝑖𝐤 ⋅𝐑)𝜙𝜇(𝐫 − 𝜏𝜇 −𝐑) (11)

where 𝜙𝜇(𝐫 − 𝜏𝜇 − 𝐑) are the atomic orbitals centering on an atom in 
the unit cell 𝐑. The index 𝜇 enumerates the atomic orbitals.

The total density matrix is the sum

𝑃 =
∑
𝐤 
𝑃𝐤, (12)

where the density matrix 𝑃𝐤 in the matrix representation is

𝑃𝐤 = 𝜔𝐤𝐶𝐤𝐹𝐤𝐶
†
𝐤 (13)

with occupation matrix elements 𝐹𝑖𝑗𝐤 = 𝑓 (𝜖𝑖𝐤, 𝜇)𝛿𝑖𝑗 . The charge density 
can be expressed as the diagonal of the density matrix,

𝑛(𝐫) = diag(⟨𝐫|𝑃 |𝐫′⟩), (14)

in which 𝑃 is evaluated on grid points. The chemical potential 𝜇 can be 
determined by satisfying 𝑁𝑒 = ∫ d𝐫 𝑛(𝐫), with 𝑁𝑒 electrons in the unit 
cell.

The Kohn-Sham equation (see Eq. (7)) can be cast into a generalized 
matrix eigenvalue problem,

𝐻𝐤𝐶𝐤 =𝐸𝐤𝑆𝐤𝐶𝐤, (15)

where 𝐻𝐤, 𝑆𝐤, and 𝐶𝐤 are the Hamiltonian matrix, overlap matrix and 
eigenvectors at a given 𝐤-point, respectively. The energy matrix 𝐸𝐤 is 
a diagonal matrix with elements 𝐸𝑖𝑗𝐤 = 𝜖𝑖𝐤𝛿𝑖𝑗 . In the case of norm-
conserving pseudopotentials, the external potential can be split into 
local part 𝑣𝐿

𝛼
and nonlocal part 𝑣𝑁𝐿

𝛼
, 𝑣ext,𝛼 = 𝑣𝐿𝛼 + 𝑣𝑁𝐿

𝛼
. The nonlocality 

of pseudopotential 𝑣𝑁𝐿 is included via the standard nonlocal projectors 
[43],

𝑣𝑁𝐿
𝛼

=
𝑙max∑
𝑙=0 

𝑙∑
𝑚=−𝑙

𝑛max∑
𝑛=1 

||𝜒𝛼𝑙𝑚𝑛⟩ ⟨𝜒𝛼𝑙𝑚𝑛|| (16)

where ||𝜒𝛼𝑙𝑚𝑛⟩ are non-local projectors. 𝑙 and 𝑚 are the azimuthal and 
magnetic quantum numbers, respectively, and n is the multiplicity of 
projectors. 𝑙max and 𝑛max are the maximal angular momentum and the 
maximal multiplicity of projectors for each angular momentum channel.

The Hamiltonian matrix 𝐻𝐤 and the overlap matrix 𝑆𝐤 are both of 
size 𝑀 ×𝑀 ,

𝐻𝛼𝛽𝐤 = ∫ d𝐫 𝜒∗
𝛼𝐤(𝐫)𝐻𝐤 𝜒𝛽𝐤(𝐫) (17)

and

𝑆𝛼𝛽𝐤 = ∫ d𝐫 𝜒∗
𝛼𝐤(𝐫) 𝜒𝛽𝐤(𝐫). (18)

For orthonormal basis functions, such as the plane wave basis, 𝑆𝐤 = 𝐼𝑀 . 
In general, the overlap matrix 𝑆𝐤 is a symmetric positive definite matrix, 
which assures a Cholesky decomposition

𝑆𝐤 =𝑈
†
𝐤𝑈𝐤. (19)

The orthogonal constraint imposed on the coefficient matrix reads

𝐶
†
𝐤𝑆𝐤𝐶𝐤† = 𝐼𝑁 . (20)

The total energy is thus a function of the coefficient matrix 𝐂, 𝐸KS(𝐂).

2.4. Matrix optimization with orthogonality constraints

As introduced above, instead of diagonalizing the Hamiltonian ma-
trix, an alternative method is called the direct minimization, which was 
discussed in details in Ref. [7]. The standard optimization problem with 
orthogonality constraints is

min 
𝑋∈ℂ𝑛×𝑝

 (𝑋), such that 𝑋†𝑋 = 𝐼𝑝, (21)

where  (𝑋) ∶ℂ𝑛×𝑝 →ℝ is a differentiable function. Meanwhile, the KS 
minimization problem becomes

min 
𝐶𝐤∈ℂ𝑀×𝑁

𝐸KS(𝐂), such that 𝐶†
𝐤𝑆𝐤𝐶𝐤 = 𝐼𝑁 . (22)

It can be easily verified that the KS problem can be adapted to the stan-
dard form, with the auxiliary transformation matrix 𝑈𝐤 (see Eq. (19)),

𝑋𝐤 =𝑈𝐤𝐶𝐤 or 𝐶𝐤 =𝑈−1
𝐤 𝑋𝐤. (23)

The total energy can be written as a sum

𝐸KS =𝐸𝑏[𝑃 ] + Φ[𝑛], (24)

where

𝐸𝑏[𝑃 ] = tr(
∑
𝐤 
𝑃𝐤𝐻𝐤), (25)

is the band energy and Φ[𝑛] is a density-dependent quantity. The deriva-
tive of the energy functional is essential in the optimization. The energy 
variation can be computed with the variation of the density matrix

d𝐸KS = tr(
∑
𝐤 
𝐻𝐤d𝑃𝐤) (26)

where, substituting Eq. (23) into Eq. (13),

d𝑃𝐤 = 𝜔𝐤

[
d𝐶𝐤 𝐹𝐤𝐶

†
𝐤 +𝐶𝐤 𝐹𝐤 d𝐶†

𝐤

]
= 𝜔𝐤

[
𝑈−1
𝐤

(
d𝑋𝐤 𝐹𝐤𝑋

†
𝐤 +𝑋𝐤 𝐹𝐤 d𝑋†

𝐤

)
(𝑈−1

𝐤 )†
]
. (27)

Therefore, the derivative of the energy functional can be derived as fol-
lows [20]

(∇𝐸KS)𝐤 ≡ 𝜕𝐸KS

𝜕𝑋
†
𝐤

= 𝜔𝐤(𝑈−1
𝐤 )†𝐻𝐤𝑈

−1
𝐤 𝑋𝐤𝐹𝐤, (28)

following the definition

d𝐸KS = tr
⎡⎢⎢⎣d𝑋†

𝐤

(
𝜕𝐸KS

𝜕𝑋
†
𝐤

)
+

(
𝜕𝐸KS

𝜕𝑋
†
𝐤

)†

d𝑋𝐤

⎤⎥⎥⎦ (29)

and the application of cyclicity of the trace tr(𝑋𝑌 ) = tr(𝑌 𝑋).

2.5. Complex Stiefel manifold

Classical methods for unconstrained optimization in Euclidean 
space, such as steepest descent, conjugate gradient, quasi-Newton meth-
ods, and trust-region methods, can be generalized to optimization on 
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Riemannian manifolds. For the KS problem (22), the underlying mani-
fold is a complex Stiefel manifold, which is the space of matrices defined 
as

St𝑝
𝑛
∶= {𝑋 ∈ℂ𝑛×𝑝 ∶𝑋†𝑋 = 𝐼𝑝}. (30)

We denote the manifold as St for brevity. The Stiefel manifold may be 
embedded in the 𝑛𝑝-dimensional Euclidean space of 𝑛-by-𝑝 matrices. 
When 𝑝 = 1, the Stiefel manifold reduces to a sphere, and when 𝑝 = 𝑛, 
it corresponds to the group of orthogonal matrices, known as 𝑂𝑛. At 
𝑋 ∈ St, we have the tangent space

𝑇𝑋St =
{
𝑌 =𝑋𝐵 +𝑍 ∣𝐵† = −𝐵,𝑍†𝑋 = 0

}
, (31)

where 𝑌 ,𝑍 ∈ ℂ𝑛×𝑝,𝐵 ∈ ℂ𝑝×𝑝. Here, 𝐵 is a skew-Hermitian matrix and 
𝑍 is a matrix orthogonal to 𝑋.

The orthogonal projection of any vector 𝑉 ∈ℂ𝑛×𝑝 onto 𝑇𝑋St is

𝜋𝑋 (𝑉 ) = 𝑉 −𝑋 sym(𝑋†𝑉 ). (32)

There are two commonly used metrics for the tangent space: the Eu-
clidean metric ⟨𝑈,𝑉 ⟩𝑒

𝑋
= tr(𝑈†𝑉 ) and the canonical metric

⟨𝑈,𝑉 ⟩𝑐
𝑋
= tr

[
𝑈†

(
𝐼𝑛 −

1
2
𝑋𝑋†

)
𝑉

]
(33)

where 𝑈,𝑉 ∈ 𝑇𝑋St [25].
In Riemannian optimization, two fundamental components are 

needed. The first component is the “retraction”, which smoothly maps 
a point from the tangent space to the manifold. In notations, a mapping 
 from the tangent space 𝑇St into St is a retraction, which satisfies

𝑋 (0) =𝑋,∀𝑋 ∈ St, (34a)

𝑑

𝑑𝑡
𝑋 (𝑡𝑍) ∣𝑡=0=𝑍,∀𝑋 ∈ St,∀𝑍 ∈ 𝑇𝑋St. (34b)

Common retractions for Stiefel manifold include the exponential map-
ping

𝑒𝑥𝑝

𝑋
(𝑈 ) = (𝑋 𝑈 )

(
exp

(
𝐴 −𝑆
𝐼𝑝 𝐴

))(
𝐼𝑝

0 

)
exp(−𝐴) (35)

where 𝑋 ∈ St,𝑈 ∈ 𝑇𝑋St,𝐴 =𝑋†𝑈 , and 𝑆 = 𝑈†𝑈 [25]. This retraction 
requires geodesics along the manifold, where matrix exponential is re-
quired and thus computationally expensive. In contrast, projection-like 
retractions such as the QR decomposition can be viewed as the first-
order approximations to the exponential one, which is preferred in many 
practical applications. The QR decomposition retraction is

𝑋 (𝑈 ) = qf(𝑋 +𝑈 ) (36)

where qf(⋅) denotes the 𝑄 factor of the QR decomposition with non-
negative elements on the diagonal of 𝑅. The polar decomposition

𝑋 (𝑈 ) = (𝑋 +𝑈 )
(
𝐼𝑝 +𝑈†𝑈

)−1∕2
(37)

is another common retraction choice, which is second-order.
The second component is the “vector transport”, which transfers a 

vector from the tangent space of an adjacent point to the same tangent 
space at a given point. It is a computationally affordable approxima-
tion to the “parallel transport”. This is essential in the optimization 
approaches such as the conjugate gradient method, because otherwise 
vectors from different tangent spaces are not directly computable. The 
vector transport by projection is denoted by  𝑃 , as in Eq. (32),

 𝑃
𝑈
(𝑉 ) = 𝑉 − 𝑌 sym(𝑌 †𝑉 ) (38)

where 𝑈,𝑉 ∈ 𝑇𝑋St, 𝑌 = 𝑋 (𝑈 ), and  is the associated retraction. 
Alternatively, the vector transport by differentiated retraction  𝑅

𝑈
(𝑉 )

could be used accordingly [44].

2.6. Riemannian conjugate gradient methods

Conjugate gradient methods offer significant advantages by effi-
ciently handling the curvature and geometric structure of the manifold, 
requiring low memory, and achieving faster convergence. They avoid 
the need for matrix inversions and are adaptable with retraction meth-
ods, making them versatile and powerful tools for manifold-based opti-
mization problems in various scientific and engineering applications.

Similar to the Euclidean case, the Riemannian conjugate gradient 
(RCG) methods require the essential ingredient, the Riemannian gra-
dient 𝑔 = grad𝑓 . In the Stiefel manifold, it can be computed with the 
Euclidean gradient ∇𝑓

grad𝑓 =∇𝑓 −𝑋 (∇𝑓 )†𝑋. (39)

Keeping the conjugacy, the new search direction 𝑑𝑘+1 is computed as

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘+1𝛼𝑘𝑑𝑘 (𝑑𝑘) (40)

where 𝑔𝑘 denotes the gradient at iteration 𝑘 and 𝛼𝑘𝑑𝑘 (𝑑𝑘) in this work 
is the projection base formula in Eq. (38). In RCG methods, the param-
eter 𝛽𝑘+1 for the conjugate gradient direction in each iteration can take 
on various forms. To facilitate this, it is often convenient to define the 
quantity:

𝑦𝑘+1 = 𝑔𝑘+1 − 𝛼𝑘𝑑𝑘 (𝑔𝑘) (41)

With this, schemes by Fletcher-Reeves [45], Polak-Ribière [46] and 
Polyak [47], Dai-Yuan [48], Hestenes-Stiefel [49], Liu-Storey [50], 
Hager-Zhang [51] are commonly adopted algorithms. Some examples 
of these adapted forms are listed below.

𝛽FR
𝑘+1 =

⟨𝑔𝑘+1, 𝑔𝑘+1⟩𝑋𝑘+1⟨𝑔𝑘, 𝑔𝑘⟩𝑋𝑘 , (42a)

𝛽PR−P
𝑘+1 =

⟨𝑔𝑘+1, 𝑦𝑘+1⟩𝑋𝑘+1⟨𝑔𝑘, 𝑔𝑘⟩𝑋𝑘 , (42b)

𝛽DY
𝑘+1 =

⟨𝑔𝑘+1, 𝑔𝑘+1⟩𝑋𝑘+1⟨𝑦𝑘+1,𝛼𝑘𝑑𝑘 (𝑑𝑘)⟩𝑋𝑘+1 , (42c)

𝛽HS
𝑘+1 =

⟨𝑔𝑘+1, 𝑦𝑘+1⟩𝑋𝑘+1⟨𝑦𝑘+1,𝛼𝑘𝑑𝑘 (𝑑𝑘)⟩𝑋𝑘+1 . (42d)

The canonical metric in Eq. (33) is adopted in computing the vector 
product, e.g. ⟨𝑦𝑘+1,𝛼𝑘𝑑𝑘 (𝑑𝑘)⟩𝑋𝑘+1 and hence all superscripts 𝑐 is omit-
ted. With these, the RCG method is summarized in Algorithm 1. In this 
algorithm, we give an example of QR decomposition retraction in the 
language of linear algebra operations. For 𝑋𝑘

(𝛼𝑘𝑑𝑘) = qf(𝑋𝑘 + 𝛼𝑘𝑑𝑘), 
qf(𝑋𝑘 + 𝛼𝑘𝑑𝑘) is the Q factor of the QR decomposition of 𝑋𝑘 + 𝛼𝑘𝑑𝑘. 
For other retractions and vector transports, one needs to apply the cor-
responding linear algebra operations in Table 1.

For multiple 𝐤-points, all quantities are indexed by 𝑘𝑖 = 1,2,⋯ ,𝐾 , 
where 𝐾 is its total size. Therefore, the concept of the product of man-
ifolds naturally fits into the description. A product of Stiefel manifolds 
is denoted by St = St1 × St2 ×⋯× St𝐾 , where St𝑖 is a sub-manifold. An 
element 𝐗 in St is denoted by

𝐗 =
(
𝑋𝑇

1 ,𝑋
𝑇
2 ,⋯ ,𝑋𝑇

𝐾

)𝑇
, (43)

where 𝑋𝑖 ∈ St𝑖. The tangent space of St is

𝑇𝑋St = 𝑇𝑋1
St1 × 𝑇𝑋2

St2 ×⋯ × 𝑇𝑋𝐾 St𝐾, (44)

whose norm is thus the sum of all the norms of each sub-manifold.
To apply to the multiple 𝐤-points cases, one simply expands the di-

mension of the pertinent 𝑋, by stacking 𝐾 copies of 𝑋, each of the same 
size. In the algorithm, one needs to adapt 𝑋 and 𝑔 into bold symbols 𝐗
and 𝐠 (see above). For each 𝐤-point, taking care of the orthogonal con-
straint 𝑋†

𝑘𝑖
𝑋𝑘𝑖 = 𝐼𝑝, the related operations in the algorithm have to be 

performed within the corresponding submanifold. The modification to 
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Table 1
Example of key linear algebra operations for Riemannian optimization on the Stiefel 
manifold. Note, 𝑌 =𝑋 (𝑈 ) in the vector transport formula.

Operation Linear Algebra Formula Key LAPACK Routine 
Euclidean metric ⟨𝑈,𝑉 ⟩𝑒

𝑋
= tr[𝑈 †𝑉 ] ZGEMM 

Canonical metric ⟨𝑈,𝑉 ⟩𝑐
𝑋
= tr[𝑈 †(𝐼 − 1

2
𝑋𝑋†)𝑉 ] ZGEMM 

Riemannian gradient grad𝑓 (𝑋) = ∇𝑓 −𝑋(∇𝑓 )†𝑋 ZGEMM 
QR retraction 𝑋 (𝑈 ) = qf(𝑋 +𝑈 ) ZGEQRF 
Polar retraction 𝑋 (𝑈 ) = (𝑋 +𝑈 )(𝐼𝑝 +𝑈 †𝑈 )−1∕2 ZHEEV 
Vector transport by projection 𝑈 (𝑉 ) = 𝑉 − 𝑌 sym(𝑌 †𝑉 ) ZGEMM 
Tangent space projection 𝜋𝑋 (𝑉 ) = 𝑉 −𝑋 sym(𝑋†𝑉 ) ZGEMM 

Fig. 1. The flowchart for the RCG method. 

the norm is to use the proper norm for the product of manifolds (e.g. 
the maximum norm in Ref. [34]) when computing the CG parameters.

Algorithm 1 Conjugate gradient method for minimizing 𝑓 (𝑋) on the 
Stiefel manifold.
1: Initialization: choose 𝑋0 ∈ St, 𝜖𝑔, 𝜖𝑓 > 0, 𝑘max, 𝑔0 = grad𝑓 (𝑋0), initial 

search direction 𝑑0 = 𝑔0
2: while ‖𝑔𝑘‖ > 𝜖𝑔 (or |𝑓𝑘+1 − 𝑓𝑘| > 𝜖𝑓 ) and 𝑘 < 𝑘max do

3: Line search to find step size 𝛼𝑘 > 0, and update the point 𝑋𝑘+1 ←
𝑋𝑘

(𝛼𝑘𝑑𝑘) using Eq. (36)
4: Compute new Riemannian gradient 𝑔𝑘+1 ← grad𝑓 (𝑋𝑘+1) using Eq. (39) 

and the conjugate direction parameter 𝛽𝑘+1 (e.g. using the FR scheme)

𝛽𝑘+1 ←
⟨𝑔𝑘+1, 𝑔𝑘+1⟩𝑋𝑘+1⟨𝑔𝑘, 𝑔𝑘⟩𝑋𝑘

5: Compute a search direction as 𝑑𝑘+1 ← −𝑔𝑘+1 + 𝛽𝑘+1𝛼𝑘𝑑𝑘 (𝑑𝑘) using 
Eq. (38)

6: 𝑘← 𝑘+ 1
7: end while

More graphically, we represent this algorithm in the following 
flowchart (Fig. 1). The most time consuming part is in the line search 
part where function and its gradient evaluations are required to find the 

right step size. In contrast, the standard SCF method is rather different 
(see Fig. B.5 in Appendix B). It requires direct (or iterative) diagonal-
ization of the Hamiltonian matrix and a proper density mixing scheme.

3. Implementation details

As a first step, we have implemented the conjugate gradient di-
rect minimization on the complex Stiefel manifold algorithm within 
the open-source ABACUS software [52,39], which uses norm-conserving 
pseudo potentials to describe the interactions between nuclear ions and 
valence electrons. Currently, we have only implemented the numerical 
atomic basis set calculations. The same algorithm can be easily adapted 
to the plane-wave basis, which ABACUS also supports.

Taking advantage of the modular structure, the whole algorithm is 
integrated as a new inherited solver. In this solver, typical conjugate gra-
dient schemes (42) can be chosen via variables within the input. Choices 
of retraction defaults to the projection type and the vector transport by 
projection  𝑃 are used. The step length is chosen such that it satisfies 
the strong Wolfe conditions [44]

𝑓

(𝑋𝑘

(
𝛼𝑘𝑑𝑘

)) ≤ 𝑓 (𝑋𝑘)+ 𝑐1𝛼𝑘 ⟨∇𝑓 (𝑋𝑘) , 𝑑𝑘⟩𝑋𝑘 (45)

and
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Fig. 2. Data structure for 𝐤-dependent variable 𝐗 where each component of 
the vector indexed by 𝑘𝑖 lives in a sub-manifold. Each matrix 𝑋𝑘 is a 𝑀 ×𝑁
complex matrix. Same structure applies to 𝐇 and 𝐅.

|||||
⟨
grad𝑓

(𝑋𝑘

(
𝛼𝑘𝑑𝑘

))
,𝛼𝑘𝑑𝑘 (𝑑𝑘)

⟩
𝑋𝑘

(
𝛼𝑘𝑑𝑘

)|||||
≤ 𝑐2 |||⟨grad𝑓 (𝑋𝑘) , 𝑑𝑘⟩𝑋𝑘 ||| (46)

where 0 < 𝑐1 < 𝑐2 < 1. Default values 𝑐1 = 10−4, 𝑐2 = 0.9 are used. The 
initial step length 𝛼0 = 1.0 is used as default and can be modified in the 
input. The line search begins with a trial estimate 𝛼𝑡 , and keeps increas-
ing the step length until it finds either an acceptable step length or an 
interval that brackets the desired step lengths. Once such an interval 
is established, the zoom algorithm, combined with cubic interpolation, 
is employed to refine the step length. This bracketing process contin-
ues until an acceptable step length is determined [8]. We have not done 
any preconditioning to speed up the convergence yet. An initial guess 
for the orbitals is taken to be the eigenvectors of the Hamiltonian ob-
tained from a superposition of atomic densities. The implementation can 
be found in Ref. [53].

Due to the 𝐤 dependence in the orbitals 𝑋𝐤, the dimension of the 
one-electron wave-function is of size 𝑀 ×𝑁 ×𝐾 , where 𝐾 denotes the 
number of irreducible 𝐤-points in the 1st Brillouin zone. For this, we use 
the concept of product of Stiefel manifolds as a single entity. Therefore, 
for each 𝐤, there is a sub-manifold associated with it. The data structure 
is sketched in Fig. 2. To assess the feasibility for varying 𝐾 , the norm of 
𝐗 is defined as the sum of norms in each sub-manifold divided by the 
number of sub-manifolds, 𝐾 . In other words, we take the average. In 
this way, its norm ‖𝐗‖ should be close to 1 for varying 𝐾 .

The structure is very similar to a typical representation of wave-
functions. What is needed in Algorithm 1 is to empower the linear 
algebra operations to them. This could easily be realized with some 
open-source linear algebra libraries, such as armadillo [54] or Eigen[55] 
in C + + language. In our implementation, we used a vector of size 𝐾 of 
complex matrices in armadillo to represent 𝐗. Each vector element is of 
size 𝑀 ×𝑁 . The linear algebra operations are performed independently 
within each sub-manifold.

To form 𝐹𝐤, the occupation number 𝑓𝑖𝐤 can be computed with only 
the diagonal elements of 𝐶†

𝐤𝐻𝐤𝐶𝐤. The chemical potential 𝜇 is deter-
mined by bisection method according to a smearing scheme such as the 
Fermi-Dirac smearing or the Gaussian smearing.

4. Results

All calculations were performed on a workstation with an Intel(R) 
Comet Lake Processor (at 3.80 GHz×8, 16 MB cache). The total num-
ber of cores is 8 and the total number of threads is 16. All codes were 
compiled with the Intel oneAPI compilers on Debian 12. To ensure fair 
comparisons, multi-threading was disabled, and only a single core was 
utilized for all computations.

4.1. Test problems

To test the RCG algorithm, we have applied the optimization proce-
dure to two simple problems. The argument 𝑋𝑘 ∈ℂ𝑛×𝑝 in both problems 
is subject to the orthogonality constraint 𝑋†

𝑘
𝑋𝑘 = 𝐼𝑝. To mimic the 𝐤

dependence in the electronic structure theory for periodic systems, we 
have extended these with a 𝐤 dependence of minimum size 2, namely 
𝐾 = 2.

The first problem is the orthogonal Procrustes problem. In this prob-
lem, the objective function is 𝑓 (𝑋) = ‖𝐴𝑋 − 𝐵‖𝐹 and its gradient can 
be computed analytically 𝜕𝑓 

𝜕𝑋† = 𝐴𝑋 − 𝐵. The second problem is the 
eigenvalue problem, whose objective function is 𝑓 (𝑋) = −1

2 tr
(
𝑋†𝐸𝑋

)
and its gradient is 𝜕𝑓 

𝜕𝑋† = −𝐸𝑋. For each 𝑘, 𝐴𝑘 ∈ℂ𝑚×𝑛,𝐵𝑘 ∈ℂ𝑚×𝑝, and 
𝐸𝑘 ∈ ℂ𝑛×𝑛. Setting random 𝐴 and 𝐵 = 𝐴𝐼 , an initial guess is chosen as 
the known solution 𝐼 plus a perturbed random deviation 𝑋0 = 𝐼 + 𝜖𝑃 , 
where 𝜖 is a small number and 𝑃 is a random matrix, the algorithm 
successfully finds the solution. Similarly, setting 𝐸 as a Hermitian ma-
trix, the algorithm also delivers the right solution against the standard 
eigensolver.

4.2. Molecules and solids

To identify the advantages and disadvantages of the RCG method, 
we performed single point ground state energy calculations for G2 
data set of small molecules [56,57], and a few simple bulk solids. As 
a comparison, we have also provided a tentative implementation of 
the Riemannian BFGS (RBFGS) method (see detailed algorithm in Ap-
pendix A), which has to be considered preliminary (some more cases 
fail to converge). Structure files were converted to ABACUS format us-
ing the utility code atomkit. For molecules, a cubic supercell of length 
15.0 Angstrom with Γ-point is always used and periodic boundary con-
ditions are imposed. For solids, Monkhorst-Pack k-point meshes were 
generated with a spacing of 0.06 in the unit of 2𝜋∕Å with atom-

kit as well. Norm-conserving pseudopotentials (optimized ONCV) [58] 
were used to describe the electron-ion interactions. The nonlocality of 
pseudopotential is included via the standard nonlocal projectors [43]. 
Double-𝜁 plus polarization function (DZP) basis set and the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional were used [59]. 
The default SCF algorithm uses the Broyden density mixing of dimen-
sion 8 [60], with mixing parameter 0.8 for spin-unpolarized calcu-
lations. The convergence is reached when the relative density error, 
Δ𝜌𝑅 = 1 

𝑁𝑒
∫ |Δ𝜌(𝑟)|𝑑3𝑟, is less than 10−6. By default, the Kerker pre-

conditioner is also turned on. The direct minimization stops when the 
change of the total energy between consecutive iterations is less than 
5 × 10−9 a.u. Note here we use |𝑓𝑘+1 − 𝑓𝑘| < 𝜖𝑓 as the stopping crite-
rion in Algorithm 1. After numerous tests, we found that the function 
tolerance 𝜖𝑓 is more effective in controlling the convergence than the 
gradient tolerance 𝜖𝑔 .

To begin with, we implemented four conjugate gradient schemes 
listed in Eq. (42). For a test molecule acetonitrile CH3CN, the converged 
energy from the SCF calculation is taken as the minimum energy. The 
error in terms of iteration is shown on a log scale. It can be seen that all 
schemes have the super-linear convergence. For this case, Dai-Yuan and 
Polak-Rieère-Polyak are slightly faster in reaching the minimum. It is 
also observed that Dai-Yuan runs faster than others in many cases (see 
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Fig. 3. Convergence rate comparison among four common conjugate gradient 
schemes for RCG calculation on acetonitrile molecule, CH3CN. Error is taken 
with respect to the converged energy of SCF and is displayed on a log scale. 
Among these schemes, the Dai-Yuan method consistently consumes the least 
time in most scenarios.

Fig. 4. The error of the ground state energy with respect to the different toler-
ances for CH3CN and C5H8. 𝐸SCF is the converged energy from SCF calculation. 
The number of iterations is shown beside the marker.

Fig. 3). Therefore, all our calculations used Dai-Yuan scheme in com-
puting 𝛽𝑘. 

Additionally, to examine how the error in the ground state energy 
changes based on different stopping criteria and tolerance levels in 
RCG, we present the results in Fig. 4 for the acetonitrile (CH3CN) and 
spiropentane (C5H8) molecules. We observe that a smaller tolerance 𝜖𝑓
leads to a smaller error in the ground state energy, which aligns with 
our expectations. The number of iterations increases when the tolerance 
decreases, as anticipated. 

Calculations for all 148 molecules in the G2 dataset are success-
fully converged using the SCF method. However, for some molecules, 
the minimization process of the RCG method halted after the first few 
iterations, resulting in higher energies compared to the SCF calcula-
tions. This issue may stem from the initial gradient being too small due 
to the atomic density initialization. For nearly all the remaining 134 
molecules, the RCG method yielded total energies with an error of less 
than 0.003 meV (mostly 0.001 meV) compared to the SCF energies.

The number of iterations of RCG is compared to that of RBFGS. In 
Table 2, the statistics show that the RCG method has larger variations 
in the number of iterations. The average iterations of RBFGS are less 

Table 2
Statistics for the total number of iterations for RCG and RBFGS methods for 
molecules. Avg. and Std. stand for the mean and the standard deviation.

Iterations RCG RBFGS 
Avg. 26.5 16.1 
Std. 13.6 4.2 
Min 7 4 
Max 84 29 

than the RCG method. From these tests, the RBFGS method should be 
the method of choice.

The Hamiltonian is updated in both real space and reciprocal space, 
a process that involves computationally expensive numerical grid inte-
grals and Fourier transforms. This step is common to both the direct 
minimization method and the iterative diagonalization method, result-
ing in similar computational costs per iteration. During the line search, 
the RCG and RBFGS method may require a couple of calls in evaluat-
ing the objective function and its gradient. In contrast, for small system 
sizes, such as those in the G2 dataset, the manifold-related operations 
(such as metric evaluation, retraction, and vector transport) in these 
methods account for only a small fraction of the overall computational 
time.

However, for the solids (Cu,LiF,Mg,MgO,NaCl, and SiC) tested, the 
computational time required grows rapidly with respect to the number 
of 𝐤-points. In contrast, the SCF method is less sensitive to the number 
of 𝐤-points. In this regard, the SCF method is more efficient than the 
RCG and RBFGS methods. We anticipate that the efficiency and robust-
ness of direct minimization methods can be further enhanced through 
continuous effort on refinement of the implementation.

5. Discussions and conclusion

Direct minimization method on the complex Stiefel manifold in 
Kohn-Sham density functional theory is formulated to treat both finite 
and extended systems in a unified manner. Utilizing the product of 
Stiefel manifolds, we have demonstrated the feasibility of direct min-
imization calculations with a line search method for both finite and 
extended systems. In our pilot implementation of the conjugate gradi-
ent method and tentative version of the BFGS method on the complex 
Stiefel manifold within a compact basis set, we conducted comparison 
tests to reveal advantage and disadvantages of the Riemannian methods.

Without invoking any preconditioning in the manifold minimization 
method, we show it can deal with both finite systems compared to the 
standard SCF method. In fact, for finite systems with Γ-point calcula-
tion, it is not necessary to use complex Stiefel manifold. Reverting back 
to the real case, further speed-up is guaranteed by the dimension re-
duction. Unfortunately, it is rather slow for extended systems. The slow 
convergence problem for periodic systems should be alleviated with bet-
ter preconditioning. Building upon the linear algebra formulation, the 
implementation of other second-order Riemannian optimization meth-
ods, such as trust-region methods, may potentially compete against the 
SCF method.

Currently, the default retraction and vector transport methods are 
projection-based. The main computational bottleneck for the KSDFT 
problem lies in the evaluation of the objective function and its gradi-
ent. For a compact basis set, the performance degradation is negligible 
even when using exact geodesic retraction and parallel transport. How-
ever, for future implementations involving a non-compact basis (such 
as a plane-wave basis), geodesic retraction may become increasingly 
demanding due to the necessity of evaluating the matrix exponential. 
Similarly, the recent Exponential Transformation Direct Minimization 
(ETDM) method [24] might also face challenges under these condi-
tions. In such scenarios, the economical retraction and vector transport 
methods will demonstrate their superiority, offering a more efficient al-
ternative without compromising performance. It is worth pointing out 
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that in the matrix exponential such as ETDM, the number of elements in 
the exponent to be optimized is 𝑀(𝑀 +1) for each 𝐤-point, much larger 
than this work, which is 2𝑀𝑁 when 𝑀 ≫𝑁 . Normally, the associated 
operations scales as 𝑂(𝑀𝑁2), much faster than 𝑂(𝑀3).

The framework laid out in this work offers potential conveniences 
for various other electronic structure problems with orthogonality con-
straints. For instance, the self-interaction corrected functional can be 
directly tested. Currently, we are actively investigating the implemen-
tation of reduced density matrix functional, where additional degrees 
of freedom, such as the natural occupation number, need to be op-
timized. For these computationally intensive objectives, simultaneous 
optimization should be employed to achieve more efficient calculations. 
Further research is needed to determine which method—iterative diag-
onalization or direct minimization—offers greater efficiency in RDMFT 
for periodic systems.
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Appendix A. Riemannian BFGS method

We present the structure of the RBFGS algorithm [61,62] in Algo-
rithm 2, where the search direction at 𝑘th iteration is obtained by

𝑑𝑘 = −𝐵−1
𝑘

grad𝑓 (𝑋𝑘), (A.1)

with 𝐵−1
𝑘

being a linear operator on 𝑇𝑋𝑘St, which approximates the ac-
tion of the inverse Hessian along the gradient grad𝑓 (𝑋𝑘). The symmetry 
and positive definiteness of 𝐵𝑘+1 [62] are ensured by

𝐵𝑘+1 =
⎧⎪⎨⎪⎩
�̃�𝑘 −

�̃�𝑘𝑠𝑘(�̃�∗
𝑘
𝑠𝑘)†⟨

�̃�∗
𝑘
𝑠𝑘,𝑠𝑘

⟩ +
𝑦𝑘𝑦

†
𝑘⟨𝑦𝑘,𝑠𝑘⟩ , ⟨𝑦𝑘,𝑠𝑘⟩‖‖𝑠𝑘‖‖2 ≥ 𝜗(∥ grad𝑓 (𝑋𝑘) ∥),

�̃�𝑘 otherwise,
(A.2)

where �̃�𝑘 = 𝛼𝑘𝑑𝑘 ◦ 𝐵𝑘 ◦
(𝛼𝑘𝑑𝑘)−1, 𝑦𝑘 = 𝛽−1

𝑘
grad𝑓 (𝑋𝑘+1) − 

𝛼𝑘𝑑𝑘
(
grad𝑓 (𝑋𝑘)

)
, 𝑠𝑘 = 𝛼𝑘𝑑𝑘

(
𝛼𝑘𝑑𝑘

)
, 𝛽𝑘 =

‖𝛼𝑘𝑑𝑘‖ ‖ 𝑅
𝛼𝑘𝑑𝑘

(
𝛼𝑘𝑑𝑘

)‖ , 𝜗 is a func-

tion that strictly increasing at 0 and satisfying 𝜗(0) = 0, for instance, we 
can set 𝜗(𝑡) = 10−4𝑡. Here, the symbol ◦ denotes operator composition 
(or operation composition), meaning that two operations are applied 
sequentially to an object [63,26].  is vector transport by projection 
that its inverse is equal to its adjoint,  𝑅 denotes the vector transport 
by differentiated retraction. Let 𝐴 be a linear operator on 𝑇𝑋St, 𝐴∗ de-
notes the adjoint operator of 𝐴. When the retraction is based on the QR 
decomposition, for any 𝑍,𝑈 ∈ 𝑇𝑋St,  𝑅 is [26]

 𝑅
𝑍

(𝑈 ) =𝑋 (𝑍)𝜌skew
(𝑋 (𝑍)†𝑈𝑋 (𝑍)†(𝑋 +𝑍)−1

)
+
(
𝐼 −𝑋 (𝑍)𝑋 (𝑍)†

)
𝑈
(𝑋 (𝑍)†(𝑋 +𝑍)−1

)
,

(A.3)

(𝜌skew(𝐴))𝑖𝑗 =
⎧⎪⎨⎪⎩
𝐴𝑖𝑗 , if 𝑖 > 𝑗,
0, if 𝑖 = 𝑗,
−𝐴𝑗𝑖, if 𝑖 < 𝑗,

(A.4)

where 𝑋 (⋅) is the QR decomposition retraction in Eq. (36), 𝑋 ∈ St.
In the algorithm, the inverse Hessian approximation 𝐻𝑘 = 𝐵−1

𝑘
is 

used instead of 𝐵𝑘, and the update formula for 𝐻𝑘 [62] is

𝐻𝑘+1 = �̃�𝑘−
�̃�𝑘𝑦𝑘,

(
�̃�∗
𝑘
𝑦𝑘
)†

⟨�̃�∗
𝑘
𝑦𝑘, 𝑦𝑘⟩ +

𝑠𝑘𝑠
†
𝑘⟨𝑠𝑘, 𝑦𝑘⟩ , �̃�𝑘 = 𝛼𝑘𝑑𝑘 ◦𝐻𝑘◦

(𝛼𝑘𝑑𝑘)−1 ,
(A.5)

thus, 𝑑𝑘 = −𝐻𝑘 grad𝑓 (𝑋𝑘), and computing 𝐻𝑘 is easier than calculat-
ing the inverse of 𝐵𝑘. 𝐻𝑖 and �̃�𝑖 refer to the approximation to the 
inverse Hessian matrix, not the Hamiltonian matrix. Meanwhile, one 
has to choose the initial inverse Hessian approximation 𝐻0 . The widely 
used one is the scaled identity matrix

𝐻0 = 𝛾𝐼 (A.6)

where 𝛾 is a positive scalar and 𝐼 is the identity matrix. One can either 
utilize gradient information or problem specific estimate of Hessian to 
initialize 𝐻0. In this work, we used the most naïve choice of 𝛾 = 1. 
For multiple 𝐤-points, analogous extension to Algorithm 1 should be 
applied.

Algorithm 2 BFGS method for minimizing 𝑓 (𝑋) on the Stiefel manifold.
1: Initialization: choose 𝑋0 ∈ St, 𝜖𝑔, 𝜖𝑓 > 0, 𝑘max, 𝑔0 = grad𝑓 (𝑋0), initial in-

verse Hessian approximation 𝐻0 = 𝐼 that is symmetric positive definite with 
respect to the metric in Eq. (33)

2: while ‖𝑔𝑘‖ > 𝜖𝑔 (or |𝑓𝑘+1 − 𝑓𝑘| > 𝜖𝑓 ) and 𝑘 < 𝑘max do

3: Compute a direction as 𝑑𝑘 ← −𝐻𝑘𝑔𝑘
4: Line search to find step size 𝛼𝑘 > 0, and update the point 𝑋𝑘+1 ←

𝑋𝑘
(𝛼𝑘𝑑𝑘) using Eq. (36)

5: Compute new Riemannian gradient 𝑔𝑘+1 ← grad𝑓 (𝑋𝑘+1) and inverse 
Hessian approximation 𝐻𝑘+1 using Eq. (A.5)

6: 𝑘← 𝑘+ 1
7: end while

Since the retraction based on the QR decomposition and vector trans-
port  do not satisfy the locking condition [61]

𝜉 (𝜉) = 𝛽 𝑅
𝜉

(𝜉) , 𝛽 = ∥ 𝜉 ∥ 
∥  𝑅

𝜉
(𝜉) ∥

, (A.7)

the vector transport  needs to be modified as

𝑑 (𝜉) =
(
𝐼 −

2𝜈2𝜈
†
2⟨𝜈2, 𝜈2⟩
)(

𝐼 −
2𝜈1𝜈

†
1⟨𝜈1, 𝜈1⟩
)
𝑑 (𝜉) , (A.8)

where 𝜈1 = 𝜉1 − 𝜔, 𝜈2 = 𝜔 − 𝜉2, 𝜉1 = 𝑑 (𝑑) , 𝜉2 = 𝛽 𝑅
𝑑

(𝑑) , 𝑌 =𝑋 (𝑑), 𝑑
denotes search direction, 𝜉 ∈ 𝑇𝑋St, 𝜔 could be any vector in tangent 
space 𝑇𝑌 St that satisfies ‖𝜔‖ = ‖𝜉1‖ = ‖𝜉2‖, and we take 𝜔 = −𝜉1. Of 
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Fig. B.5. The flowchart for the SCF method. Different convergence criteria can 
be chosen.

course, there are other methods to ensure the locking condition [61]. 
In our computation, we use the modified vector transport to replace the 

original one. Although �̃�𝑘 = 𝛼𝑘𝑑𝑘 ◦𝐻𝑘 ◦
(𝛼𝑘𝑑𝑘)−1 is theoretically pre-

ferred, our calculations indicate that using �̃�𝑘 = 𝛼𝑘𝑑𝑘 ◦𝐻𝑘 ◦
(𝛼𝑘𝑑𝑘)−1

to compute the approximate inverse Hessian matrix results in a signif-
icant increase in the number of iterations and time consumption com-
pared to directly using �̃�𝑘 =𝐻𝑘. Additionally, for systems that cannot 
converge to the SCF calculation results with the latter approach, the 
former approach also does not lead to convergence. Thus, we adopted 
�̃�𝑘 =𝐻𝑘.

Appendix B. Flowchart of the SCF method

To fully illustrate the difference between the SCF method and pro-
posed RCG method, a flowchart of the SCF method is attached, which 
can be compared against Fig. 1. 

Data availability

Data will be made available on request.
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